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Numerical Simulation of Sepalated Flows over 
Arbitrary Airfoils and Their Resulting Wakes 

I ntr oduc t ion 

The aerodynamic design of a flight vehicle must carefully account for the 

drag. For 

flows of practical interest, the Reynolds number is sufficiently large for the 

flow field to be divided into viscous and inviscid zones, e.g.8 the problem of 

flow past wing. Different approaches are available for solving such a prob- 

lem. Inherently, the Navier-Stokes formulations lead to an extremely stiff 

nonlinear system. Using an explicit algorithm to solve such problems results 

in the requirement of very small time-steps in order to satisfy the stability 

bounds. Therefore, many iterations and large computer times are required to 

reach the steady-state. To remove the time-step restriction, fully implicit 

methods have been investigated. The implicit methods, however, still require 

many iterations to reach the steady state and consequently, still require 

large computational costs. 

The estimation of the drag is greatly affected by viscous effects. 

In an effort to decrease the computational costs associated with the im- 

plicit algorithms, many different procedures have been Studied, in particular 

the Pulliam-Chaussee diagonalization procedure' and the Barth-Steger matrix 

reduction method.2 

have dkamatically increased the convergence rate. However, one problem still 

remains: long running times for general configuration. In aircraft design, 

New dissipation models3 and spatially varying time-steps 

any pertinent parameters must be accurately predicted (c,, cD8 etc.). 

end, high resolution is required in order to accurately compute the flow 

physics of shock and boundary-layer interaction, massive separation and turbu- 

lent flow structures. 

To this 
a 

To overcome the problem of grid generation for complicated geometries and 

long tunning times, zonal approaches have become increasingly popular. By 
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zonal approach we mean partitioniig of the flow field into distinct pones each 

of which is solved independently, where the length scales associated with each 

individual region are honored. There are a number of advantages for the zonal 

technique. First, the difficulty in generating three-dimensional grids for 

different types of complex configurations can be eliminated with the use of 
- 

zonal methods. Second, zonal methods would allow different types of grid 

topologies to be implemented where appropriate in order for the grids to be 

mesh-efficient, that is, more points on the configuration, where accuracy is 

desired, and fewer points in the outer flow field. And finally, finer meshes 

can be used in those regions of rapid changes in the flow quantities, for ex- 

ample, in the regions where shocks occur, in the viscous boundary layer, or 

where vorticity is generated. The zonal concept has been successfully applied 

by the a ~ t h o r ~ * ~ * ~  to some model problems for two-dimensional and axisymmetric 

flows. 

The present work is a generalization and improvement of an earlier work 

developed for studying separated flows using boundary layer type equations. 

The improvements include extensions to a general coordinate system and use of 

a more general zonal technique for solving the coupled equations. In order to 

be able to consider arbitrary geometries, second order accurate (in space) 

conservative differences are generated by considering the integral formulation 

of the governing equations in a general coordinate system. The general coor- 

dinate system is handled in as general a manner as possible to allow for the 

use of either analytically or numerically generated coordinate systems. 

The present work used a marching procedure for solving the PPNS (Par- 

tially Parabolized Navier-Stokes) equations in the viscous region coupled in a 

fully implicit manner with the elliptic inviscid equation. To test the algo- 

rithm and compare to other solutions, solutions for flow over a flat plate and 
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flow past the symmetrical 12-per.cent-thick Joukowski airfoil (5012 1 at zero 

angle of attack were obtained. 

Anal y si s 

The basic equations which describe the motion of laminar incompressible 

flow are the Navier-Stokes equations. 

stream function-vorticity ($-w) form in general coordinates, 

These equations can be written in 

and 

where 

2 
n a = x  + Y; 

a = xs 2 + y: 

and Re is the Reynolds number. 

If the chosen coordinate system is orthogonal, then 6 is zero. 

Defining the unit vectors in the ( g , n )  coordinate system as (el,e2) , the + +  

velocity vector t can be expressed as 
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. I  -b -b 

2 
t = ue + ve 

1 

where u and v are t h e  components of f def ined  as,  

( 7 )  

The r e l a t i o n  between t h e  Car t e s i an  v e l o c i t y  components (uc,vc) and t h e  

p r e s e n t  v e l o c i t y  components (u ,v )  is ,  

x u+x v 
u -  -u 

C J 

Y U+Y v 

J 
-u v -  

C 

Eva lua t ion  of t h e  P res su re  

The momentum equat ions can be w r i t t e n  as 

p t  v t  = -VP - pv2 t  

where p is t h e  p r e s s u r e  and p is  t h e  dens i ty .  

( 1 0 )  

( 1 1 )  

( 1 2 )  

M u l t i p l y i n g  t h e  x-momentum equat ion by dx and t h e  y-momentum equa t ion  by dy 

and add ing  t h e  t w o  t o  g e t  a s i n g l e  equat ion f o r  t h e  p r e s s u r e ,  
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Equation ( 1 3 )  can be written as, 

ax) d[p - +PI + pw d$ = p ( g  dy - - V2 
2 aY 

The Cartesian operators can be expresed in terms of the general coordinates as 
- 

and 

a a (x - - x  -) a 
aY J e an n ag 
- = -  

I Or 

Equation (13) is expressed in terms of the genetal coordinates as, 

n terms of cp (pressure coeff cient), 

a aw 
R J E J n  J an J a g  

’ aw + - -)do} w + ( -  - - a d[V2+Cp] = -2wd$ + - 2 8  { (- w - - 
e 

(16) 

(18) 

Inviscid Analysis 

The inviscid solution in the present work is obtained from an incompress- 

ible stream function representation of the inviscid flow region with zero vor- 

ticity. The boundary conditions for the inviscid region are, at the inflow 

boundary, {=g,, u=u 

the viscous and inviscid zones, and for n-, u +u-. 

dary, g=eo, $x =O (see reference 6 for more details). 

. On the interfrice J, is known from the coupling between 
W 

At the outer flow boun- 

A second order accurate conservative difference scheme is generated for 

the stream function equation, by integrating the equation around a differential 

5 



. .  
element in the physical domain. The resulting algebraic system of equations 

is solved iteratively with the SLOR (Successive Line Over Relaxation) scheme. 

At each e-line in the computational domain, the finite difference equation at 

each nodal - point is 

where the index J denotes the grid position in the q direction and 641 the 

change of J, between successive iterations, that is 

Along each 6-line, a tridiagonal system of equations is solved using the 

Thomas a1 gori thm . 

Viscous Analysis 

The flow in the viscous region is assumed to be governed by PPNS or (TL) 

equations, 

and 

JW + - a (- = * , s 9 ) + a ( a a o - s 9 ,  
at J at J an at J an J at 

The above equations are to be solved in the viscous region. 

Boundary conditions for the viscous equations are at the surface, 

(2% 1 
1 1 = 0 8  * = * n = O  

at the interface, 

- 6  
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11 = qIN, J, = $IN ( o b t a i n e d  from t h e  c o u p l i n g ) ,  w = 0 

a t  t h e  i n f l o w  boundary, 

5 = El, JI = $ ( T I ) ,  w = w (0) 

a t  t h e  o u t f l o w  boundary, 

5 = E o ,  v i s c i d / i n v i s c i d  i n t e r a c t i o n  is n e g l i g i b l e .  

C e n t r a l  f i n i t e  d i f f e r e n c e  approximations a r e  used everywhere except  f o r  

t h e  term ( J ,  6w 1 ,  which i s  t r e a t e d  as an upwind d i f f e r e n c e .  That  means, i n  

t h e  l i m i t  of t h e  s t e a d y  s ta te ,  a second o r d e r  a c c u r a t e  s o l u t i o n  is  obtained.  

n 5  

A t  each  S l i n e ,  t h e  c o r r e c t i o n  equat ions based on a Newton l i n e a r i z a t i o n  

procedure have t h e  gene ra l  form: 

+ +- "I,J+l + &'I,J-l E 6w18J + 6w18J+1 = R1 A "1,J-1 

(24a )  

+ e 6 w  + f 6 ~ ~ , ~ + ~  = R2 a 6J,I,J-1 + 6$*,J + %,J+l + 6'I,J-1 . 1,J 

(24b)  

A b l o c k  (2x2) t r i d i a g o n a l  Thomas algori thm is  used,  where i n  t h e  forward 

pass, t h e  c o e f f i c i e n t s  are c a l c u l a t e d  s t a r t i n g  with t h e  i n t e r f a c e  boundary 

c o n d i t i o n s .  The boundary c o n d i t i o n  a t  t h e  s u r f a c e  and t h e  c o u p l i n g  between 

v i s c o u s  and i n v i s c i d  zones are t r e a t e d  between v i scous  and i n v i s c i d  zones are 

t r e a t e d  i n  t h e  same way d e s c r i b e d  i n  r e fe rence  6. 

Numerical Generat ion of Metric C o e f f i c i e n t s  

A s  explained,  one way of gene ra t ing  a second o r d e r  a c c u r a t e  c o n s e r v a t i v e  

d i f f e r e n c i n g  scheme i n c l u d e s  c a l c u l a t i n g  t h e  metric c o e f f i c i e n t s  and t h e  

Jacob ian  of t h e  coord ina te  t r ans fo rma t ion  a t  t h e  c e n t e r  ( i n  t h e  t ransformed 

p l a n e )  of each s i d e  of t h e  d i f f e r e n t i a l  element shown i n  ske tch  1. 
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\ 0 i+1 ,  i 

oi, i \ 
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Sketch 1 , Different ia l  Element 

On s i d e s  

w i l l  be ca lculated on s i d e s  2 and 4 .  

J1 w e r e  previously defined a s ,  

1 and 3 the  c o e f f i c i e n t s  a and w i l l  be ca lculated while - a and B J J J J 

Using s i d e  1 a s  an example, al, 6, and 

- 2 2 
"1 - xlE + Y1E ( 2 5 )  

a 



and 

Along side 1, An = 0, t h e r e f o r e ,  

or 

Ax 1 = -  
XIS A E l  

Using t h e  s u b s c r i p t s  i n  s k e t c h  1,  

(29) 

where AS, = AS5, = A 5  = c o n s t a n t .  

S i m i l a r l y  , 

These c e n t r a l  d i f f e r e n c e s  are second order a c c u r a t e  i n  space. Therefore ,  

a1 can be r e p r e s e n t e d  t o  second o r d e r  accuracy as  

The c o e f f i c i e n t s  B and J inc lude  t h e  terms x and y x and y are cal- 

c u l a t e d  i n  t h e  same manner as  x and y , and t h e i r  second order a c c u r a t e  

f i n i t e  d i f f e r e n c e  r e p r e s e n t a t i o n s  a r e  

In 1n I n  In 

1E fn 
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Therefore ,  t h e  second o r d e r  a c c u r a t e  r e p r e s e n t a t i o n s  of f3 and J, are 1 

and 

The f i n i t e  d i f f e r e n c e  e x p r e s s i o n s  f o r  t h e  m e t r i c  c o e f f i c i e n t s  and 

Jacob ian  of t h e  t r a n s f o r m a t i o n  a t  t h e  cen te r  of t h e  remain ing  element  s i d e s  

a r e  de r ived  analogously.  Therefore ,  t o  genera te  t h e  metric c o e f f i c i e n t s  and 

Jacob ians  throughout  t h e  s o l u t i o n  p l a n e  wi th  c e n t r a l  d i f f e r e n c e s ,  t h e  

C a r t e s i a n  c o o r d i n a t e s  of t h e  a lgo r i thm s o l u t i o n  p o i n t s ,  t h e  c o r n e r s  of t h e  

d i f f e r e n t i a l  e lements ,  and  t h e  p o i n t s  o u t s i d e  t h e  boundar ies ,  must be known. 

R e s u l t s  and Discussion 

The a lgo r i thm w a s  tested for  two cases.  The first case was f l o w  over a 

f l a t  p la te  and  t h e  second one  was f l o w  p a s t  t h e  s p m e t r i c a l  Joukowski a i r f o i l  

J012 a t  z e r o  a n g l e  of a t t a c k .  The f l a t  plate s o l u t i o n  e x a c t l y  matched t h e  

known B l a s i u s  s o l u t i o n .  For t h e  case of 5012 a i r f o i l ,  t h e  cho ice  of t h e  g r i d  

is very  c r i t i c a l  f o r  viscous computations over a i r foi ls .  There h a s  been 

g e n e r a l  agreement t h a t  C t y p e  g r i d s  are t h e  best  for  hand l ing  t h e  t r a i l i n g  

edge and wakes for a i r f o i l s .  One clear advantage of t h e  p re sen t  fo rmula t ion  

is t h e  complete independence on t h e  way by which t h e  g r i d  is genera ted .  That  

means t h e  p r e s e n t  scheme is  capab le  of so lv ing  any type  of g r ids .  A C type  

g r i d  f o r  5012 a i r f o i l  u s e d  by  NASA Langley, see f i g u r e  1,  was implemented for 

t h e  p r e s e n t  work. Only h a l f  of t h e  g r i d  (F igu re  2 )  w a s  used for t h e  a c t u a l  
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magnified 

(Figure 4 

on 

computations due to  t h e  symmetry of t h e  problem. The g r i d  shown i n  Figure 1 

i s  a c o a r s e  g r i d  f o r  high Reynolds number f lows.  Only t w o  Reynolds number 

s o l u t i o n s  ( R  =lo00 and Re=2000) w e r e  obtained f o r  t h e  g r i d  shown i n  f i g u r e  2 .  

Figure  3 shows t h e  f r i c t i o n  c o e f f i c i e n t  (G 1 over  t h e  s u r f a c e  of t h e  a i r f o i l  

a t  R e = l O O O .  

a i r f o i l  i s  i n  complete agreement with the s t a g n a t i o n  p o i n t  flow8 s o l u t i o n  

e 

f 

The v a l u e  of 'c i n  t h e  v i c i n i t y  of t h e  l e a d i n g  edge o f  t h e  
f 

=1.2326) .  The v a l u e s  o f  nea r  t h e  t r a i l i n g  edge o f  t h e  a i r f o i l  were (hlw f 

a l a r g e r  s c a l e  t o  be a b l e  t o  see t h e  s o l u t i o n  i n  t h a t  r eg ion  

As t h e  Re i n c r e a s e d  up t o  2000,  t h e  f l o w  s e p a r a t e d  a t  64% of t h e  

chord i n  - c c - r d a n c e  of t h e  experimental  d a t a  of r e f e r e n c e  8, and t h e  s o l u t i o n  

of t h e  i n t e g r a l  form o f  t h e  boundary l a y e r  equa t ions ,  see f i g u r e  5 .  The 

va lues  of c 
6. The s t r e a m l i n e  contours  are given i n  f i g u r e  7. 

i n  t h e  sepa ra t ed  region a r e  d i sp l ayed  on a l a r g e r  scale, f i g u r e  f 

Conclusion 

The c o n t r i b u t i o n  of t h e  c u r r e n t  work l i e s  i n  t h e  g e n e r a l i z a t i o n  o f  t h e  

zonal t echn ique  f o r  s o l v i n g  s e p a r a t e d  flows over any a r b i t r a r y  a i r f o i l .  A 

numerical  s t u d y  of t h e  aerodynamic c h a r a c t e r i s t i c s  f o r  a i r f o i l s  near s t a l l  i s  

v i a b l e  u s i n g  t h e  developed method. 
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